Skip to content

Tamarind tree

The tamarind tree is a tree whose partially dried fruit is used to make medicine.

Tamarind tree products are used to treat constipation, liver and gallbladder problems and stomach disorders. They are also used to treat colds and fevers. Women sometimes use tamarind tree products to treat nausea associated with pregnancy. In addition, tamarind tree products are given to children to treat intestinal worm infestation. Sometimes a thick paste of tamarind tree seeds is used as a support bandage for broken bones. An extract of tamarind tree seeds is used in eye drops for dry eyes. Tamarind tree products are used as flavorings in food and beverages. In Asia, tamarind tree products are widely used as an ingredient in chutney and curry dishes.

How do tamarind tree products work?

Tamarind tree products contain ingredients that have a laxative effect and may have activity against certain fungi and bacteria. Scientists are investigating tamarind tree products as a possible treatment for dry eyes because they contain a chemical that is similar to the tear fluid in the eye.

How effective are tamarind tree products?

There is not enough scientific data to make a statement about the effectiveness of tamarind tree products for dry eyes. New research shows that eye drops containing an extract from the seeds of the tamarind tree may relieve the symptoms of dry eyes. There is also a lack of scientific information on the effectiveness of tamarind tree products for constipation, colds, fever, liver and gallbladder problems, stomach problems, pregnancy-related nausea and intestinal worm infestation. Further scientific research is needed to evaluate the effectiveness of tamarind tree products in these applications.

Safety and side effects

Tamarind tree products are safe and harmless when used in normal food quantities. There is insufficient information available to determine whether tamarind tree products are safe and harmless when used in medicinal quantities.

Precautions and warnings

Pregnancy and lactation: Tamarind tree products are safe during pregnancy and lactation in normal food quantities. However, larger medicinal amounts should be avoided until more is known about their safety.

Interactions

Care should be taken when combining tamarind tree products with the following medications:

**Aspirin

Taking tamarind tree products with aspirin could increase the amount of aspirin absorbed by the body. This could increase the amount of aspirin in the body and the risk of side effects.

**Ibuprofen

Taking tamarind tree products with ibuprofen could increase the amount of ibuprofen the body absorbs. This could increase the amount of ibuprofen in the body and the risk of side effects.

Dosage

An appropriate dosage of tamarind tree products depends on various factors such as age, health status and others. At this time, there is insufficient scientific data to determine appropriate dosage ranges for different tamarind tree products. For this reason, you should follow the dosage instructions on the label and/or consult a doctor or pharmacist before use.

References

  1. De, M., Krishna, De A., and Banerjee, A. B. Antimicrobial screening of some Indian spices. Phytother.Res. 1999;13(7):616-618. view abstract.
  2. Izzo, A. A., Di Carlo, G., Borrelli, F., and Ernst, E. Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction. Int J Cardiol. 2005;98(1):1-14. view abstract.
  3. Mastromarino, P., Petruzziello, R., Macchia, S., Rieti, S., Nicoletti, R., and Orsi, N. Antiviral activity of natural and semisynthetic polysaccharides on the early steps of rubella virus infection. J Antimicrob.Chemother. 1997;39(3):339-345. view abstract.
  4. Sambaiah, K. and Srinivasan, K. Effect of cumin, cinnamon, ginger, mustard and tamarind in induced hypercholesterolemic rats. Food 1991;35(1):47-51. view abstract.
  5. Sambaiah, K. and Srinivasan, K. Influence of spices and spice principles on hepatic mixed function oxygenase system in rats. Indian J Biochem Biophys 1989;26(4):254-258. view abstract.
  6. Abebe W. Herbal medication: potential for adverse interactions with analgesic drugs. J Clin Pharm Ther. 2002;27:391-401. view abstract.
  7. Amano, Y., Shiroishi, M., Nisizawa, K., Hoshino, E., and Kanda, T. Fine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1-->3), (1-->4)-beta-D-glucans and xyloglucan. J Biochem.(Tokyo) 1996;120(6):1123-1129. view abstract.
  8. Araujo, C. L., Bezerra, I. W., Oliveira, A. S., Moura, F. T., Macedo, L. L., Gomes, C. E., Barbosa, A. E., Macedo, F. P., Souza, T. M., Franco, O. L., Bloch, J., and Sales, M. P. In vivo bioinsecticidal activity toward Ceratitis capitata (fruit fly) and Callosobruchus maculatus (cowpea weevil) and in vitro bioinsecticidal activity toward different orders of insect pests of a trypsin inhibitor purified from tamarind tree (Tamarindus indica) seeds. J Agric.Food Chem 6-1-2005;53(11):4381-4387. view abstract.
  9. Burgalassi, S., Panichi, L., Chetoni, P., Saettone, M. F., and Boldrini, E. Development of a simple dry eye model in the albino rabbit and evaluation of some tear substitutes. Ophthalmic Res 1999;31(3):229-235. view abstract.
  10. Burgalassi, S., Raimondi, L., Pirisino, R., Banchelli, G., Boldrini, E., and Saettone, M. F. Effect of xyloglucan (tamarind seed polysaccharide) on conjunctival cell adhesion to laminin and on corneal epithelium wound healing. Eur.J.Ophthalmol. 2000;10(1):71-76. View abstract.
  11. Childhood lead poisoning associated with tamarind candy and folk remedies--California, 1999-2000. MMWR Morb.Mortal.Wkly.Rep. 8-9-2002;51(31):684-686. view abstract.
  12. Chowdhury, S. R., Sarker, D. K., Chowdhury, S. D., Smith, T. K., Roy, P. K., and Wahid, M. A. Effects of dietary tamarind on cholesterol metabolism in laying hens. Poult.Sci 2005;84(1):56-60. view abstract.
  13. Coutino-Rodriguez, R., Hernandez-Cruz, P., and Giles-Rios, H. Lectins in fruits having gastrointestinal activity: their participation in the hemagglutinating property of Escherichia coli O157:H7. Arch Med Res 2001;32(4):251-257. view abstract.
  14. Dini, E., De Abreu, J., and Lopez, E. [Osmolality of frequently consumed beverages]. Invest Clin 2004;45(4):323-335. view abstract.
  15. Electronic Code of Federal Regulations. Title 21. Part 182 -- Substances Generally Recognized As Safe. Available at: http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid= 786bafc6f6343634fbf79fcdca7061e1&rgn=div5&view= text&node=21:3.0.1.1.13&idno=21
  16. Fook, J. M., Macedo, L. L., Moura, G. E., Teixeira, F. M., Oliveira, A. S., Queiroz, A. F., and Sales, M. P. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. Life Sci 5-6-2005;76(25):2881-2891. view abstract.
  17. Garba M, Yakasai IA, Bakare MT, Munir HY. Effect of Tamarindus indica. L on the bioavailability of ibuprofen in healthy human volunteers. Eur J Drug Metab Pharmacokinet 2003;28:179-84. view abstract.
  18. Gautami, S., Rao, R. N., Raghuram, T. C., Rajagopalan, S., and Bhat, R. V. Accidental acute fatal sodium nitrite poisoning. J Toxicol.Clin Toxicol. 1995;33(2):131-133. view abstract.
  19. Ghelardi, E., Tavanti, A., Celandroni, F., Lupetti, A., Blandizzi, C., Boldrini, E., Campa, M., and Senesi, S. Effect of a novel mucoadhesive polysaccharide obtained from tamarind seeds on the intraocular penetration of gentamicin and ofloxacin in rabbits. J Antimicrob.Chemother. 2000;46(5):831-834. view abstract.
  20. Ghelardi, E., Tavanti, A., Davini, P., Celandroni, F., Salvetti, S., Parisio, E., Boldrini, E., Senesi, S., and Campa, M. A mucoadhesive polymer extracted from tamarind seed improves the intraocular penetration and efficacy of rufloxacin in topical treatment of experimental bacterial keratitis. Antimicrob.Agents Chemother. 2004;48(9):3396-3401. view abstract.
  21. Kan, S. K., Singh, N., and Chan, M. K. Oliva vidua fulminans, a marine mollusc, responsible for five fatal cases of neurotoxic food poisoning in Sabah, Malaysia. Trans.R.Soc.Trop.Med Hyg. 1986;80(1):64-65. view abstract.
  22. Kawasaki, N., Ohkura, R., Miyazaki, S., Uno, Y., Sugimoto, S., and Attwood, D. Thermally reversible xyloglucan gels as vehicles for oral drug delivery. Int J Pharm 4-30-1999;181(2):227-234. view abstract.
  23. Khandare, A. L., Kumar, P. U., Shanker, R. G., Venkaiah, K., and Lakshmaiah, N. Additional beneficial effect of tamarind ingestion over defluoridated water supply to adolescent boys in a fluorotic area. Nutrition 2004;20(5):433-436. view abstract.
  24. Khandare, A. L., Rao, G. S., and Lakshmaiah, N. Effect of tamarind ingestion on fluoride excretion in humans. Eur.J.Clin.Nutr. 2002;56(1):82-85. view abstract.
  25. Komutarin, T., Azadi, S., Butterworth, L., Keil, D., Chitsomboon, B., Suttajit, M., and Meade, B. J. Extract of the seed coat of Tamarindus indica inhibits nitric oxide production by murine macrophages in vitro and in vivo. Food Chem Toxicol. 2004;42(4):649-658. view abstract.
  26. Lynch, R. A., Boatright, D. T., and Moss, S. K. Lead-contaminated imported tamarind candy and children's blood lead levels. Public Health Rep. 2000;115(6):537-543. view abstract.
  27. Maiti, R., Jana, D., Das, U. K., and Ghosh, D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2004;92(1):85-91. view abstract.
  28. Mendoza, S., Montemayor, L., Boscan, L. A., and Barreiro, J. A. [Microflora in pasteurized fruit juices in Venezuela]. Arch Latinoam.Nutr 1982;32(3):617-629. view abstract.
  29. Miyazaki, S., Suisha, F., Kawasaki, N., Shirakawa, M., Yamatoya, K., and Attwood, D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J Control Release 12-4-1998;56(1-3):75-83. view abstract.
  30. Murray, R., Dingwall-Fordyce, I., and Lane, R. E. An outbreak of weaver's cough associated with tamarind seed powder. Br J Ind Med 1957;14(2):105-110. view abstract.
  31. Mustapha A, Yakasai IA, Abdu Aguye I. Effect of Tamarindus indica L. on the bioavailability of aspirin in healthy human volunteers. Eur J Drug Metab Pharmacokinet 1996;21:223-6. View abstract.
  32. Nassereddin, R. A. and Yamani, M. I. Microbiological quality of sous and tamarind, traditional drinks consumed in Jordan. J Food Prot. 2005;68(4):773-777. view abstract.
  33. Rolando M, Valente C. Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: results of a clinical study. BMC Ophthalmol 2007;7:5. view abstract.
  34. Shivshankar, P. and Devi, S. C. Screening of stimulatory effects of dietary risk factors on mouse intestinal cell kinetics. World J Gastroenterol. 1-14-2005;11(2):242-248. view abstract.
  35. Shivshankar, P. and Shyamala Devi, C. S. Evaluation of co-stimulatory effects of Tamarindus indica L. on MNU-induced colonic cell proliferation. Food Chem Toxicol. 2004;42(8):1237-1244. view abstract.
  36. Sone, Y., Makino, C., and Misaki, A. Inhibitory effect of oligosaccharides derived from plant xyloglucan on intestinal glucose absorption in rat. J Nutr Sci Vitaminol.(Tokyo) 1992;38(4):391-395. view abstract.
  37. Steger, A., Radon, K., Pethran, A., and Nowak, D. Sensitization and lung function in workers occupationally exposed to natural thickening products. Allergy 2000;55(4):376-381. view abstract.
  38. Strickland, F. M., Darvill, A., Albersheim, P., Eberhard, S., Pauly, M., and Pelley, R. P. Inhibition of UV-induced immune suppression and interleukin-10 production by plant oligosaccharides and polysaccharides. Photochem.Photobiol. 1999;69(2):141-147. view abstract.
  39. Strickland, F. M., Kuchel, J. M., and Halliday, G. M. Natural products as aids for protecting the skin's immune system against UV damage. Cutis 2004;74(5 Suppl):24-28. view abstract.
  40. Strickland, F. M., Sun, Y., Darvill, A., Eberhard, S., Pauly, M., and Albersheim, P. Preservation of the delayed-type hypersensitivity response to alloantigen by xyloglucans or oligogalacturonide does not correlate with the capacity to reject ultraviolet-induced skin tumors in mice. J Invest Dermatol. 2001;116(1):62-68. View abstract.
  41. Thadhani, V. M., Jansz, E. R., and Peiris, H. Effect of exogenous histidine and Garcinia cambogia on histamine formation in skipjack (Katsuwonus pelamis) homogenates. Int J Food Sci Nutr 2002;53(1):29-34. view abstract.
  42. Tuffnell, P. G. and Dingwall-Fordyce, I. An investigation into the acute respiratory reaction to the inhalation of tamarind seed preparations. Br J Ind Med 1957;14(4):250-252. view abstract.
  43. Useh, N. M., Nok, A. J., Ambali, S. F., and Esievo, K. A. The inhibition of Clostridium chauvoei (jakari strain) neuraminidase activity by methanolic extracts of the stem barks of Tamarindus indicus and Combretum fragrans. J Enzyme Inhib.Med Chem 2004;19(4):339-342. view abstract.